User Tools

Site Tools


nblocks:n-pro-50

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
nblocks:n-pro-50 [2019/09/26 07:41]
faizan created
nblocks:n-pro-50 [2020/02/26 10:31] (current)
faizan
Line 1: Line 1:
-======n-PRO-40======+======n-PRO-50======
 ~~CLOSETOC~~ ~~CLOSETOC~~
 <WRAP right 220px nblock round :en> <WRAP right 220px nblock round :en>
-<WRAP centeralign>//​**n-PRO-40**// </​WRAP>​ +<WRAP centeralign>//​**n-PRO-50**// </​WRAP>​ 
-{{n-pro-40-03.jpg}}+{{n-pro-50-03.jpg}}
 <WRAP centeralign>​ <WRAP centeralign>​
-n-PRO-40</​WRAP>​+n-PRO-50</​WRAP>​
 | License ​       | GPL 2.0 | | License ​       | GPL 2.0 |
 | Status ​        | Tested | | Status ​        | Tested |
 | Buy at:        |   | | Buy at:        |   |
 | Categories ​    ​| ​ | | Categories ​    ​| ​ |
-| Hardware repo  | [[https://​bitbucket.org/​nimbus_it/​n-pro-40|Bitbucket]] | +| Hardware repo  | [[https://​bitbucket.org/​nimbus_it/​n-pro-50|Bitbucket]] | 
-| Firmware repo  | [[https://​bitbucket.org/​nimbus_it/​n-pro-40|Bitbucket]] |+| Firmware repo  | [[https://​bitbucket.org/​nimbus_it/​n-pro-50|Bitbucket]] |
 </​WRAP>​ </​WRAP>​
  
-n-PRO-40 has been designed to offer practical and cost effective solution for users seeking to add LoRa connectivity to their projects ​with minimal previous experience in networking. This board from the n-Blocks family is based on [[nblocks:​proformfactor|n-Blocks PRO form factor]]. +n-PRO-50 has been designed to accommodate wide range of 64 pins LQFP64 STM32 microprocessors. It can be used as generic development board with [[nblocks:​proformfactor|n-Blocks PRO form factor]]. 
-<WRAP centeralign>​{{:​nblocks:​n-pro-40-01.jpg?​300|}}</​WRAP>​+<WRAP centeralign>​{{:​nblocks:​n-pro-50-01.jpg?​300|}}</​WRAP> ​
  
  
 ===== Overview===== ===== Overview=====
 <​poem>​ <​poem>​
-[[nblocks:​n-PN LoRaWAN|n-PRO-40]] board is a low-cost and easy-to-use development ​kit to quickly evaluate and start some development ​with LoRaWAN protocol using an ARM® 32-bit ​Cortex™-M and totally compatible with n-Best ecosystem. It is based on Murata CMWX1ZZABZ LoRa module ​and also features STM32L082 microcontroller. The exclusive combination of an Arm® Cortex®-M0+ core and STM32 ultra-low-power featuresmakes the STM32L082 ​the best fit for applications ​operating on batteries or supplied by energy harvesting. ​ It is the ideal solution for users looking to design IoT projects ​with minimal previous experience in networking having a low power device.+[[nblocks:​n-PN LoRaWAN|n-PRO-50]] is a low-cost and easy-to-use development ​board which provides the flexibility ​to build prototypes ​with the STM32 microcontrollers. It has been assembled with pin compatible wide range of 64pin LQFP64 ​Cortex ​M0,M3,M4 CPUs and mbed supported libraries. It allows end-user or designer to choose from different combinations of performance,​ power consumption ​and clock rates. The board also have Four Hirose DF30-series 60-pin low profile connectors which can enable additional functionality such as RF-CommunicationExternal Sensor interface, display control interface etc. n-PRO-50 comes with the following microcontrollers:​  
 +</​poem>​ 
 + 
 +  * STM32L152: Ultra Low Power, LoRaWAN Stack 
 +  * STM32F103: Generic, low cost, well established,​ widely used, many examples and community projects 
 +  * STM32F401: Generic, low cost, well established,​ widely used, Cortex M4 more powerful than F103, many application notes 
 +  * STM32L476: Ultra Low Power, CortexM4, Many application notes including LoRa 
 +  * STM32L073: Ultra Low Power and Low Cost, Many application notes including LoRa 
 +  
 + 
 +Some of the targeted ​applications ​are listed below: 
 +  * Wireless Sensors and Wearables using the Low Power variations ​with Sensing and Radio n-Blocks Peripheral boards 
 +                      * Low Power Radio Sensors: LoRaWAN, LoRa 2.4 GHz, 802.15.4, BLE, 3G, NBiOT 
 +                      * Environmental Sensors: Temp, Humidity, Barometric, CO2, Air Particles, VOC, CO2, Movement, Light, Sun-Irradiance 
 +                      * Localisation:​ GPS, LoRa2.4-TOF,​ UWB 
 +  * Motion Controllers for 3Dprinting and BLDC servo 
 +  * PLC controller boards 
 +  * Modbus Sensors and peripherals
  
-Communication with the module can be achieved via UART, SPI, or I2C peripheral interfaces. GPIOs provide plenty of flexibility for connecting sensors, switches and status LEDs, and the module is powered from a 1.6 to 3.6 VDC supply. ​ 
  
-</​poem>​ 
  
 \\ \\
-===== STM32 MCU Features ====+===== n-PRO-50 ​Features ====
 <WRAP left 600px  :en> <WRAP left 600px  :en>
-  * Up to 192 KB Flash, 20KB RAM +  * **to be updated**
-  ​Low voltage 1.65 to 3.6 V +
-  * Dynamic Voltage Scaling +
-  * 5 clock sources +
-  * Advanced RTC w/ calibration +
-  ​Multiple USART, SPI, I2C +
-  ​Multiple 16-bit timers+
   ​   ​
 </​WRAP>​ </​WRAP>​
-  * 2 watchdogs +  *
-  * Program Voltage Detector +
-  * Reset circuitry POR/PDR +
-  * 16-bit ADC (hardware oversampling) +
-  * Ultra-safe, low-power BOR (brownout reset) with 5 selectable thresholds +
-  * LCD interface, comparator, DAC  +
-  * Hardware Encryption Engine AES 128-bit+
 \\ \\
 \\ \\
Line 50: Line 53:
  
  
-=====Board Pinout ​projected to Top side===== +=====Board Pinout===== 
- ​n-PRO-50 is a **HOST** board with 4 x 60 pin MOLEX SLIMSTACK ​connectors at bottom side,  following the [[nblocks:​nproformfactor|n-Blocks PRO form factor]].\\ + ​n-PRO-50 is a **HOST** board with four Hirose DF30-series ​60-pin low profile ​connectors at bottom side,  following the [[nblocks:​nproformfactor|n-Blocks PRO form factor]].\\ 
-<WRAP centeralign>​{{nblocks:​n-pro-40-bp.png?900|}}</​WRAP>​+<WRAP centeralign>​{{nblocks:​n-pro-50-02.jpg?300|}}</​WRAP>​ 
 + 
 +<WRAP centeralign>​{{nblocks:​n-pro-50-nbusa.jpg|}}</​WRAP>​ 
 +\\ 
 +<WRAP centeralign>​{{nblocks:​n-pro-50-nbusb.jpg|}}</​WRAP>​ 
 +\\ 
 +<WRAP centeralign>​{{nblocks:​n-pro-50-nbusc.jpg|}}</​WRAP>​ 
 +\\ 
 +<WRAP centeralign>​{{nblocks:​n-pro-50-nbusd.jpg|}}</​WRAP>​
 \\ \\
  
Line 63: Line 74:
  
 ===== Getting started===== ===== Getting started=====
-To configure all the necessary tools to start working with the n-PN board, two main elements need to be downloaded by the user. 
  
-  * An **Integrated development environment (IDE)**. Although the n-PN board can support a wide variety of IDEs to work with, KEIL environment can be chosen for two main reasons: 
-      - STM provides all the necessary LoRaWAN protocol drivers for the microcontroller embedded in the n-PN board for this IDE. 
-      - KEIL IDE (MDK Version 5) is free for STM32F0 and STM32L0 microcontrollers and due to the n-PN board has an STM32L0 microcontroller,​ we are allowed to activate the license for this software environment (follow the instructions[[http://​www2.keil.com/​stmicroelectronics-stm32/​mdk|here]]). ​ 
-        
-  * The **Nimbus SDK** which contains the minimum files to start working with the n-PN board as well as some basic examples that the user can use as templates (Nimbus SDK is based on STM32CubeExpansion_LRWAN_V1.1.4 and can be found in the next repository: https://​bitbucket.org/​nimbus_it/​pn_lora_node). 
- 
-  * After installing KEIL (MDK) IDE(and the license activated) and downloading the Nimbus SDK, there are several basics examples (using LoRaWAN technology) which the user can start working with. The examples can be found following the path: LoRaWAN_Examples / STM32CubeExpansion_LRWAN_V1.1.4 / Projects / Multi / Applications / LoRa /. 
- 
-  * Open Any Example folder (Button folder for this example) and open MDK-ARM folder.\\ 
-{{:​nblocks:​n-pn_gs1.png?​700|}} 
-  * Open N-PN folder.\\ 
-{{:​nblocks:​n-pn_gs2.png?​700|}} 
-  * Open Button project (Double click on Button.uvprojx).\\ 
-{{:​nblocks:​n-pn_gs3.png?​700|}} 
-  * The project is ready to be tested.\\ 
-{{:​nblocks:​n-pn_gs4.png?​700|}} 
-  
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
-**NOTES:** 
-  - KEIL IDE (MDK) may not have the libraries installed for the microcontroller embedded in the n-PN board, so a pop-up window will appear asking us to install those libraries. Just follow the instructions to install them up. You may reset your computer after the installation. 
-  - If we double click on Button.uvprojx (a project file) and Windows does not recognise the extension file, just choose KEIL (MDK). 
- 
-===Integrated Development Environment (IDE)=== 
-As stated, KEIL IDE (MDK) was chosen, this section explains the minimum configuration to improve our work flow. 
-  * Click on Options for Target… 
-  * In Debug tab, make sure to use the right programmer (mostly ST-Link Debugger).\\ 
-{{:​nblocks:​n-pn_ide1.png?​700|}} 
-  * In Debug tab, Click on Settings ​ 
-  * Make sure under Reset is chosen in Connect (Debug tab).\\ 
-{{:​nblocks:​n-pn_ide2.png?​700|}} 
-  * In Flash Download tab, make sure that Program, Verify and Reset and Run are selected.\\ 
-{{:​nblocks:​n-pn_ide3.png?​700|}} 
- 
-\\ 
- 
-===Firmware Structure=== 
-  * In Keil a project is structured as shown below:\\ 
-{{:​nblocks:​n-pn_ide4.png?​700|}} 
- 
-  * The main folders are explained below: 
-     * **n-PN_Board:​** The b-l072z-lrwan1.c file defines all the pinout of the n-PN board. 
-     * **Projects/​Application:​** The main.c file for the application is placed into this folder. 
-     * **N-PN/​Sensors:​** The drivers for the external sensors embedded on n-PN board are placed in this folder. 
- 
-  *  Keil IDE does not show the header files until the project is compiled, once the project is compiled, the header files can be found under the function files (clicking on the cross sign next to the function file). 
- 
-  *  Another important file is the header file called **Commissioning.h** which can be found under the main.c file. This header file contains the necessary parameters to configure your own LoRaWAN network: LORAWAN_DEVICE_EUI,​ LORAWAN_APPLICATION_EUI and LORAWAN_APPLICATION_KEY. 
- 
-\\ 
-\\ 
  
 =====Related articles in this Wiki===== =====Related articles in this Wiki=====
nblocks/n-pro-50.1569498081.txt.gz · Last modified: 2019/09/26 07:41 by faizan