. n-BlocksStudio
Nimbus Reference Design

Embedded Systems Research

n-Blocks

n-BlocksStudio

Table of Contents

N-BIOCKSSTUIO ... 1
Flow based programmingc.ccooiiiiiiiiiiiiiiiic et 2
J. Morrison; Flow based programmingc..cccccooiiiiiiiiiiiiiie e 3
Develop Application with Diagramscccoiiiiiiiiiiiiii 3
Behind the NOAESoouuiiiiiiiiiii e 4
NBIOCksSSTUAIO-RTKEIrNElcoooiiiiiiiiiii e 5
N -BIOCKSSTUAIO SEIVEr ..o 5
n -BlocksStudio Server My nodescccoooiiiiiiiiii 5
Binary Counter Example created codecccccciiiiiiiiiiiiiiiii e, 6
Binary Counter Example code is running in n-Blockc.cccooeiinnninnnn... 7
JBinary Counter Example code is running in third party board 8
Studio [NOT Node] Class Codecccoommiiiiiiiiiic e 8
ADC to serial port examplecccooiiiiiiiii 10
ADC to serial port example Compilationcccccccoiiiiiiiie 10
ADC to serial port example main.Cppccccccooiiiiiiiiiiiiiii 11
[ADC-Node] C++ microprocessor €odeccccccciiiiiiiiiiiiiiiiieeeeeeeeeeeieeeeeennnnnns 12

StUAIO FIrMWaAre CIASS@S ...ttt e e e anaens 12

n-BlocksStudio

¢ n-BlocksStudio is a programming environment which facilitate an easy way to
develop applications with n-Blocks based embedded systems or Internet of Things
hardware.

e The main requirement in the design of n-BlocksStudio was to enable users to
develop applications without having to write code (although this may not always be
possible).

e The IDE uses the Flow Based Design paradigm, using interconnected nodes to
generate underlying code

e The code that is created by n-BlocksStudio runs in a soft-realtime* firmware system
(similar to, but not as complex as an embedded operating system)

e |nititally, we used node-RED code base for the first prototype, but soon realized that
a development from scratch using Python provided a better development roadmap

e The current n-BlocksStudio runs locally on a PC, making use of OpenGL 3D rendering
for attracting visualization

e The Logic and behaviour of nodes is downloaded as Libraries from a public
repository

e The public server hosts libraries written by the n-Blocks team as well as by the
users, who contribute and share nodes with the n-Blocks user community

*soft-realtime means tasks are guaranteed to perform in the average time, but timing for
each task is not precise - as opposed to hard-realtime, in which the time for each task is
strictly met and deterministic

n-Blocks n-BlocksStudio

==

https://www.n-blocks.net/nmodules/lib/images/toolbar/bold.png

Flow based programming

In computer programming, flow-based programming (FBP) is a programming
paradigm that defines applications as networks of “black box” processes, which exchange
data across predefined connections by message passing, where the connections are
specified externally to the processes. These black box processes can be reconnected
endlessly to form different applications without having to be changed internally. FBP is
thus naturally component-oriented. FBP is a particular form of dataflow
programming based on bounded buffers, information packets with defined lifetimes,
named ports, and separate definition of connections.
https://en.wikipedia.org/wiki/Flow-based_programming

Nimbus n-BlocksStudio 2/14

Embedded Systems Research

https://www.youtube.com/embed/Vm655T1XvKE
https://www.youtube.com/embed/Vm655T1XvKE
https://www.n-blocks.net/nmodules/lib/images/toolbar/bold.png
https://en.wikipedia.org/wiki/Flow-based_programming
https://www.n-blocks.net/nmodules/lib/exe/detail.php?id=nblocksstudio%3An-blocks_studio&media=nblocks:picture1-flowbased-programming.png

n-Blocks n-BlocksStudio

J- Morrison; Flow based programming

In computer programming, Flow-Based Programming (FBP) is a programming paradigm,
discovered/invented by J. Paul Rodker Morrison in the late '60s, that uses a “data
processing factory” metaphor for designing and building applications. FBP defines
applications as networks of “black box” processes, which communicate via data chunks
(called Information Packets) travelling across predefined connections (think “conveyor
belts”), where the connections are specified externally to the processes. These black box
processes can be reconnected endlessly to form different applications without having to
be changed internally. FBP is thus naturally
component-oriented.https://jpaulm.github.io/fbp/

Back-end
'____'_,_,_—-—'-" ¥l
Recane Process
A Gues regLes! Router
' ']
L]

Return Process | Handie

response responss I' ::'."""d

¥

Develop Application with Diagrams

bus n-BlocksStudio 3/14

Embedded Systems Research

https://jpaulm.github.io/fbp/
https://www.n-blocks.net/nmodules/lib/exe/detail.php?id=nblocksstudio%3An-blocks_studio&media=nblocks:picture2-j.morrison-flow-based-programming.jpg
https://www.n-blocks.net/nmodules/lib/exe/detail.php?id=nblocksstudio%3An-blocks_studio&media=nblocks:picture3-develop-application-with-diagrams.jpg

n-Blocks n-BlocksStudio

* IDE to develop application with Diagrams
¢ No need to write code, just use nodes and connections
o Reduced complexity
o Modularity
o Expandable Library of Nodes
e Friendly for
o Makers, new firmware developers
o Experienced embedded developers

Behind the Nodes

adcopp 1

#include "adc.h”

{1l GPI
nBlock_ADC: :nBlock_ADC(PinName pinAdc): _adc(pinAdc) {
return;

void nBlock ADC::triggerInput(uint32 t inputNumber, uint32 t wvalue) {
{/ Input B trigpers a read regardless of value
if (inputNumber == @) {
output[@] = _adc.read_ul6();
available[@] = 1;

e What is behind the Node-Diagram: Embedded C++ code
e Execution of code is managed by the underlying lightweight nBlocksStudio RTkernel

bus n-BlocksStudio 4/14

Embedded Systems Research

https://www.n-blocks.net/nmodules/lib/exe/detail.php?id=nblocksstudio%3An-blocks_studio&media=nblocks:picture4-develop-with-diagrams-reduce-complexity.jpg
https://www.n-blocks.net/nmodules/lib/exe/detail.php?id=nblocksstudio%3An-blocks_studio&media=nblocks:picture5-behind_the_nodes.jpg

n-Blocks n-BlocksStudio

nBlocksStudio-RTkernel

PERIOD 1mS

o [DATA BETWEEN NODES] Each connection object retrieves data from the source
node (PREVIOUS CYCLE OR INITIAL VALUES) and sends them to the destination node

* [INSIDE NODE] The step Method of each node is called:
o Actual operation is node specific, LIKE:
= Shifting a FIFO
= Perform calculations
= Get from UART hardware buffer and send to a FIFO
= Read Inputs

n -BlocksStudio Server

n-Blocks

) EWEOPIITYTIRG With

n-Blocks Studio

nBlocksStudio Server

e Contribution model and registered users
e Downloadable Nodes
* New Nodes are contributed by users and the n-Blocks team

n -BlocksStudio Server My nodes

bus n-BlocksStudio 5/14

Embedded Systems Research

https://www.n-blocks.net/nmodules/lib/exe/detail.php?id=nblocksstudio%3An-blocks_studio&media=nblocks:picture6-n-blocksstudio_server.jpg

n-Blocks n-BlocksStudio

= 3 B Mot aecue | wwwns DRt el phe T s ninaes

Modes added to My Nodes will appear in the node list in n-Blocks Studio Designer.

bus n-BlocksStudio 6/14

Embedded Systems Research

https://www.n-blocks.net/nmodules/lib/exe/detail.php?id=nblocksstudio%3An-blocks_studio&media=nblocks:picture7-n-blocksstudio-server-my_nodes.jpg
https://www.n-blocks.net/nmodules/lib/exe/detail.php?id=nblocksstudio%3An-blocks_studio&media=nblocks:picture9-binary-counter-example-perspective.jpg

n-Blocks n-BlocksStudio

[main.cop £3

1 }ln "

P " Autcmatically generated by n-Blocks Studio Designer o

3 - -

4 . www.n-blocks.net o

5 o xf

6 #include "nblocks.h"™

7

8

g // =-*<%~ Liat of node abjects -*-t-

10 nBlock PWM nb nBlockNodel7 PWM;

11 nBlock_Ticker nb_nBlockNoded Ticker:

12 nBlock FlipFlop nb nBlockNodel3 FlipFlop:

13 nBlock FlipFlop nb_nBlockNode3 FlipFlop:

14 nBlock_GFO nb_nBlockNodel2 GPO;

15 nBlock_FlipFlop nb_nBlockNodeld FlipFlop:

1& nBlock_ADC nb_ »_nBlockNodelé ADC:

17 nBlock_FlipFlop ‘nb nBlockNodelS F.I.:.pFlop.

18

19 /{ -*-*- List of connection objects -*-*-

20 nBlockConnection n_connO (&nb_nBlockNodeO_Ticker, ©, &nb_nBlockNode3_FlipFlop, 0):
21 nBlockConnection n_connl (&nb nBlockMode3 FlipFlop, ©, &nb_nBlockNodel2 GPO, 0):
22 nBlockConnection n_ connz (&nb_nBlockNode3 FlipFlop, O, I’.nb nBlockNodel3 !'.L‘Lp!]_op, 0) ;
23 nBlockConnection n_ " conn3 (&nb_ nBlockNodel3 _FlipFlop, O, &nb nBlockNodel2 _GPO, 1):
24 nBlockConnection n | " conn4 (&nh nBlockNodel3 | |_FlipFlep, O, an nBlockNodel4d _FlipFlop, :‘);|
25 nBlockConnection n_conns (&nb nBlockMNodel4 FlipFlop, U, &nb_nElockNadelZ_GPo. 2)z
26 nBlockConnection n_conné (&nb nBlockModel4 FlipFlop, O, &nb nBlockModelS FlipFlop, 0):
2% nBlockConnection n conn? (&nb nBlockNodels FlipFlop, O, &nb ! n.BlockNode.lz GPO, 3):
28 nBlockConnection n_conn&(&nh_nﬂlncmodels__hnc, o, &nb nBlockNodelT _PWM, 0):
2%

30 J/ =*=ra Main function =t=ia

31 int main(void) {

- SetupWorkbench () ¢

33 while(.) {

34 // Your custom code here!

35 }

3% }

37

Binary Counter Example code is running in n-Block

n-BlocksStudio 7/14

Embedded Systems Research

https://www.n-blocks.net/nmodules/lib/exe/detail.php?id=nblocksstudio%3An-blocks_studio&media=nblocks:picture8-binary-counter-example-created-code.jpg

n-Blocks n-BlocksStudio

[} SEGGER J-Fidkh Lite V6300 =4
File Help boooocoon/ooooooon

oDooco [0000

7 oMM COM Y

B SEGaER - Fanh Lite VE.30h

- »
File Help

Torget

Deiee. Imesface Cped

|pe v | [se 420 ke

Dol Pl iy [b e e L0 P, aiek, fisin e only)
T e I BS—— rereyveey i

Frogrem Device

Lig

[Betected Se: Fun-

| L ahicjmbad ook /BUA DM 1TE/GOC AR frbad_cowle bari
| Conegtng fg Mok,

| Comnecting m tanget.,

| Desrioading. ..

| Dena

Studio [NOT Node] Class Code

Nimbus n-BlocksStudio 8/14

https://www.n-blocks.net/nmodules/lib/exe/detail.php?id=nblocksstudio%3An-blocks_studio&media=nblocks:picture10-nblockstudio_binary_counter_example_code_is_running_in_n-block.jpg
https://www.n-blocks.net/nmodules/lib/exe/detail.php?id=nblocksstudio%3An-blocks_studio&media=nblocks:picture11-nblockstudio_binary_counter_example_code_is_running_in_third_party_board.jpg

https://www.n-blocks.net/nmodules/lib/exe/detail.php?id=nblocksstudio%3An-blocks_studio&media=nblocks:picture12-node-class-code.jpg
https://www.n-blocks.net/nmodules/lib/exe/detail.php?id=nblocksstudio%3An-blocks_studio&media=nblocks:picture13-node-class-header.jpg

n-Blocks n-BlocksStudio

ADC to serial port example

This Diagram reads an ADC every 1000ms and sends the data in readable form to UART
serial channel

ADC to serial port example Compilation

bus n-BlocksStudio 10/14

Embedded Systems Research

https://www.n-blocks.net/nmodules/lib/exe/detail.php?id=nblocksstudio%3An-blocks_studio&media=nblocks:picture14-adc-to-serialk-port-example.jpg

ADC to serial port example main.cpp

https://www.n-blocks.net/nmodules/lib/exe/detail.php?id=nblocksstudio%3An-blocks_studio&media=nblocks:picture15-adc_to_serial_port_example.jpg

n-Blocks n-BlocksStudio

o Automatically generated by n-Blocks Studio Designer L
— wa . n-blocks.nat o
e R e R L I] s e e P o N T L L L e R LIl i P .

#include “nblocks.h"
#include “stringpack.h”
#include "simpleserial.h”
#include “and.h”

#include “or.h”

ff -"-%- List of node obiects -*-%-

nBlock Ticker nb_nBlockNoded Ticker(100@);

nBlock StringPack nb_nBlockNode? StringPack{"Value: Xd\n"};

nBlock ADC nb_nBlockNodel ADC{PO 187;

nBlock SimpleSerial nb_nBlockNode3d SimpleSerial({P2 8,P2 1};

£l =%=8-List: of - connection ohjects ~*-*-

nBlockConnection n_conn@{&nb_nBElockioded Ticker, @, &nb_nBlockModel ADC, 8);
nBlockConnection n_connl{&nb_nBlockNodel ADC, @, &nb_nBlockMNode? StringPack, @);
nBlockfonnecticon n_connZ{&nb_nBlockNoded StringPack, @, &nb_nBlockNoded SimpleSerial, @);

ffo-=-*_-‘Main function -%"-*-

int main{woid) {
Satuplklorkbenchi) ;
whila({l) {

£/ Your custom code herel

[ADC-Node] C++ microprocessor code

sdch x adcepp x
[Bifndes _ne_ac #include “adc.h”
#define _ NB_ADC
/i GP1
#include "mbed.h" nBlock_ADC: :nBlock_ADC(PinName pinAdc): _adc(pinddc) {
#include "nworkbench.h” return;
class nBlock_ADC: public nBlockSimpleNode<l> {

r public: void nBlock _ADC::triggerInput(uinti2_t inputhNumber, uint32_t value) {
nBlock_ADC(PinName pinAdc); // Input @ triggers a read regardless of value
void triggerInput(uint32_t inputNumber, wint32_t value); if (inputNumber == @) {

private: output[@] = _adc.read ul6();
AnalogIn _adc; available[@] - 1;
3 }
}

#endif

Studio Firmware Classes

n-BlocksStudio 12/14

Embedded Systems Research

https://www.n-blocks.net/nmodules/lib/exe/detail.php?id=nblocksstudio%3An-blocks_studio&media=nblocks:picture16-adc_to_serial_port_example.jpg
https://www.n-blocks.net/nmodules/lib/exe/detail.php?id=nblocksstudio%3An-blocks_studio&media=nblocks:picture17-adc-node-cpp-microprocessor_code.jpg

n-Blocks n-BlocksStudio

IMPORTANT NOTICE - PLEASE READ CAREFULLY

mbus n-BlocksStudio 13/14

https://www.n-blocks.net/nmodules/lib/exe/detail.php?id=nblocksstudio%3An-blocks_studio&media=nblocks:picture18-studio_firmware_classes.jpg

n-Blocks

n-BlocksStudio

Nimbus Centre reserve the right
to make changes, corrections,
enhancements, modifications,
and improvements to Nimbus
Centre products and/or to this
document at any time without

notice.

All other product or service
names are the property of their
respective owners.

Information in this document
supersedes and replaces
information previously supplied
in any prior versions of this
document.

Address: Cork Institute of Technology

Campus, Bishopstown, Cork

Phone: (021) 433 5560

© 2019 Nimbus Centre - All rights reserved

Nimbus

Embedded Systems Research

n-BlocksStudio

14/14

	Table of Contents
	n-BlocksStudio
	Flow based programming
	J. Morrison; Flow based programming
	Develop Application with Diagrams
	Behind the Nodes
	nBlocksStudio-RTkernel
	n -BlocksStudio Server
	n -BlocksStudio Server My_nodes
	Binary Counter Example created code
	Binary Counter Example code is running in n-Block
	JBinary Counter Example code is running in third party board
	Studio [NOT Node] Class Code
	ADC to serial port example
	ADC to serial port example Compilation
	ADC to serial port example main.cpp
	[ADC-Node] C++ microprocessor code
	Studio Firmware Classes

